’enlmear _W ve;flnteracuons
in ‘“wept ng;_?Flows

GRANT‘ NAGI-729

INASA-CR-U4142) NONLINEAR WAVE INTERACTIONS N8B8-23160

IN SWEPT WING FLOWS ‘0l1d Dominion Univ.)

53 p CS5CL 240U
Ynclas

Hi/34 0141387

NASA



NASA Contractor Report 4142

Nonlinear Wave Interactions
in Swept Wing Flows

Nabil M. El-Hady
0ld Dominion University
Norfolk, Virginia

Prepared for
Langley Research Center
under Grant NAG1-729

NASA

National Aeronautics
and Space Administration

Scientific and Technical
information Division

1988



NONLINEAR WAVE INTERACTIONS IN SWEPT WING FLOWS

Nabil M. El-Hady

Department of Mechanical Engineering and Mechanics
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Abstract
An analysis is presented that examines the modulation of different

instability modes satisfying the triad resonance condition in time and space
in a three dimensional boundary-layer flow. Detuning parameters are used for
the wavenumbers and the frequencies. The nonparallelism of the mean flow is
taken into account in the analysis. At the leading-edge region of an infinite
swept wing, different resonant triads are investigated that are comprised of
traveling crossflow, stationary crossflow, vertical vorticity, and Tollmien-
Schlichting modes. The spatial evolution of the resonating triad components

are studied.
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I. Introduction

An important stage in the transition from laminar to turbulent flow is a
region of nonlinear development, characterized by a broad spectrum of non-
linearly interacting disturbances. The character of the nonlinear development
is strongly dependent on the initial spectrum of the disturbances.,

‘Most theoretical and experimental work was performed using the Blasius
boundary layer to investigate the instability mechanism that break down into
turbulence. On the other hand, little is known about the physical phenomena
that leads to transition in cases like swept wings where the boundary layer is
three-dimensional (3D). 1In this situation, the boundary-layer profile
consists of a streamwise velocity component in the direction of the external
inviscid flow and a crossflow velocity component normal to it along the wing
surface. Due to that, different types of instability modes may exist and
different possible interactions may occur between these modes resulting in
stability characteristics that is much different from what linear theory would
suggest.

The resonant interaction of three waves is considered one of the mecha-
nisms that play an important role in determining the nonlinear characteristics
of the development of disturbances, leading to transition. Such resonance
occurs whenever the real wavenumbers k and frequencies w satisfy the

conditions
k; * ko tk3z3 =0, wy *w * w3 =0

with corresponding signs being taken.,



In Blasius boundary layer, there usually exist triads comprised of
two-dimensional wave propagating in the flow direction and two-obliquely

1.2

propagating plane waves. Raetz ¢“ and Stuart3

established the occurence of

k-7 examined

triad resonances for certain neutrally linear stable waves. Craik
the occurence of this triad resonance for certain unstable waves over a flat
plate. Lekoudis8 derived the nonlinear spatial and temporal evolution
equations of the triad waves by relaxing Craiks assumption of perfect
resonance. The resonance model of wave interaction is one of the
experimentally observed phenomena (e.g., Kachanov et al.g, Kachanov and

11

Levechenkolo, Saric and Thomas™~, Saric et al.lz),

in two-dimensional flows
that play an important role in the 3D secondary instability that break down
into turbulence.

However, in 3D boundary layers, as on a swept wing, the triad is
comprised of three resonantly interacting 3D waves that may propagate in
different directions. Because 3D boundary layers are usually rich in
instability modes, one expects the possible evolution of different triads with
different interacting'modes that resonate. Lekoudis13 confirmed the existence
of a triad on a swept wing that consists of three unsteady crossflow modes,
but the interaction coefficients and the amplitudes of the interacting waves
were never calculated in 3D boundary-layer flows.

It is known that transition prediction methods used for modern LFC trans-
port depend primarily on the use of the e” criterion. This method is based
only on the exponential growth of small individual disturbances within a
boundary layer according to linear stability theory. With the interaction of

the linear modes of these disturbances and the possibility of rapid growth of



their amplitudes, as is the case for Blasius boundary layers+“rls, the e
criterion is no longer valid and a modified one is needed.

In this article, we investigate the evolution of resonant triads in 3D
boundary layers. The triads investigated are comprised of different
instability modes, stationary crossflow (CF), traveling crossflow, vertical
vorticity (Vvv), and Tollmien-Schlishting (TS) modes. In section II the
nonlinear analysis of the triad resonant interaction is developed. The mean
flow used in the calculations is the boundary layer on a modern LFC transonic
23° swept wing. In our analysis the growth of the boundary layer is taken
into account assuming that it is of the same order as the nonlinear effects.39
Details of the mean flow are given in section III. Section IV discusses the
numerical procedures. Results for different mode-mode interactions are given

in section Vv for parallel flows, while nonparallel flow effects are discussed

in section Vi. Then we end with concluding remarks.

II. Nonlinear Analysis

We consider the nonlinear interaction of wave packets in a 3D incompres-
sible boundary layer on a swept wing. The flow field is governed by the non-
dimensional incompressible Navier-Stokes equations. The Cartesian coordinate
system used has the x-axis in the direction of the normal chord, the z-axis
along the span, and the y-axis normal to the surface. The Reynolds number

1/2, where s* is

R = U;L*/V; is based on a reference length L* = (v;s*/U;)
is the distance along the airfoil surface surface, and v; is the kinematic
viscosity coefficient evaluated at the edge of the boundary layer.

The mean flow is assumed to be slightly nonparallel, with & a small

parameter characterizing the flow divergence, and identified with 1/R. The



method of multiple scales'® is used to introduce the slow scales (x;,z1,t;) =
(ex,ez,et) that govern the growth of the boundary layer, the modulation of the
disturbance amplitude, and the change in the eigenfunction. While the phase
of the disturbance changes over the scales x, z, and t.

To determine the wave packet solution of the governing equations, we

assume that the flow quantities possess uniformly valid expansions in the

form,
~ 2
n 3
u= U(x_,v,z2,) + z €eu (x,x.,¥,2,2,,t,t,) + 0(e"7) (1)
1 1 n 1 1 1
n=1
- 2 n 3
v = ev(x,,y,2z,) + | €v (x,x ,y,2,2_,t,t ) + O(e”) (2)
1 1 n 1 1 1
n=1
~ 2ﬂ n 3
w=Wx_,vy,2.) + l ew (xX,X_,Y,2,2.,t,t.) + 0(e™) (3)
1 1 n 1 1 1
n=1
‘ p = P(x_,z.) + z €ep (x,x_ ,v¥.2,2,,t,t,) + 0(g7) (4)
LA LR n 1 1 1

Wwhere U, V, W, and P are the steady mean-flow quantities and u, v, w, and
p are the unsteady small disburbances. To account for the simultaneous
effects of the flow divergence and the disturbance nonlinearity, we assume
that both effects can be expressed by the same expansion parameter e,
Substituting equations (1) - (4) into the governing Navier-Stokes equa-
tions after transforming the time and space derivatives, subtracting the mean-

flow terms, and equating the coefficients of like powers of €, we obtain,

Order €:
du v ow
L (u_,v, ,w,) = ! + ! + LA, 0 (5)
111 dx dy 9z
du Ju du ap
1 1 au 1 1 -1,2
Ly vyr) =5 Y0ty Ve T TR T 7O (6)



1. 9N 1 1 -1,2
Ly(virp)) =g+ Ugpm+t Wm b om + R Vv, = 0 (7
ow aw aw op
1 W 1 1 -1_2
LyvyrvB) =g * e i et TR T O 8
where
02 _ 22 . 32 . 32
3x2 a3y’  3z2
Order 82:
3u1 aw1
BV = 5 T (9)
2
ou Jdu du 3p 3 u 3 u
L. (u_,v.,p.) = - LI U LI W LI ! + 2R-1( ! ! )
272722 ot 9xX 9z 9x 9x9x 9z 32
1 1 1 1 1 1
3u 3u 3u 3u M,y
-{u, —+ v ! + W 1) - [ax 1 * Va * 9z 1] (10)
1 9x 1 3y 1 3z 1 1
v, av,  av, _ dtv dv
L3(V2'pz =- at1 - 8x1 - 3z1 + 2R (3x3x1 * 82321)
aw ow v v
1 1 1 3V
Sty ttiw) T Wyt vl an
3w1 Bw1 aw1 ':)p1 -1 82w1 32w1
L (v, WyP,) = = gpm = U = W = o o+ R g )
1 1 1 1 1 1
...( _a-v:‘—.'.v E.V:l_.’.w _a_vi‘_) - [.a_w_-u +V.ai1_+_a_w_w] (12)
Y 3% 1 9y 1 3z Bx1 1 ') 821 1

Here, the leading order problem governs the linear wave in a parallel
flow, while the higher order problem includes both nonparallel and nonlinear

effects.



2a. First-order equations

Consider the nonlinear interaction that may exist among three wave
‘packets centered at the frequencies w;, w;, and w3z. Thus we express the
solution of equations (5) - (8) as a linear combination of three interacting
waves according to,

i0

3
n
q = z an(x1,z ,t1) cmn(x1,y,z1)e + C.Ce. (13)

m n=1 1

where q1m,m=1,...6 stands for wu,,du,/dy,v;,w;, 9w;/3dy, and p,; respec-

tively and

an(x1,z1) (14)

iz Bn(x1121) (15)

n
3g = ~w,s p=1,2,3 (16)

The phase functions 6, are assumed to be continuously differentiable, that

is
n__n (17)

The o and B are the complex wave numbers in the x and 2z directions

n
. - ia . and -
given by @ =a +ia. an Bn B

+ if ., and w are the complex
r ni ni n

nr

frequencies given by w = w + imni. They satisfy the resonance conditions,

n nr
w3r - w1r - w2r = ect (18)
@ - -ae, = éox (19)
B3r - B1r - B2r = ecz (20)



where the detuning parameters Ut' ox and Uz (all O0(1)] are introduced to
introduced to express quantitatively the nearness of the above resonance.

Substituting (13)-(16) into equations (5)-(8), separating coefficients
i0
for e , n=1,2,3, and writing the result as six first-order systems of

ordinary differential equations, we obtain,

(b ) C. = 0, m=1,0006 (21)

Dz - mj'n >jn

mn

e~

subject to the boundary conditions

g, =%, =%, =0 aty=0 (22)
g +0 as y » @ (23)
where D = d/dy, and the nonzero coefficients of (bmj)n are given in

Appendix A.

2b. Second-order equations

In order to determine the conditions for the elimination of secular terms
in the second-order equations (9)-(12), and hence determine the amplitudes
an in (13), we seek a particular solution for the second-order equations in

the form,

3 ien
q2m = n§1 wmn(y;x1,z1,t1)e + CeCe (24)

where q2m' m=1,...6, stands for uz,auz/ay,vz,wz, awz/ay and pz, respec-

tively. Substituting (13)-(20) and (24) into (9)-(12) and separating the

. i0 . .
coefficients of e1 N, n=1,2,3, we obtain three separate systems of equations,

where each can be written as six first-order sets of equations in the form,

D‘p - mj n jn = Imn, m=1,o-06 (25)

mn

Il c~100
—_
<
|



subject to the boundary conditions,

=1p = 0 aty:o (26)

v =¥ 4n

in 3n

¢1n,¢3n'¢4n +0 as y * « (27)

The coefficients (bmj)n are the same as in equation (21), while the
inhomogeneous terms Imn are functions of the first-order eigensolutions cmn
of equation (13), a . Bn, W and the mean-flow quantities. The terms Imn
include all nonparallel and nonlinear effects.

Since the homogeneous parts of equation (25) are the same as in equation
(21), and since the latter has a nontrivial solution, the inhomogeneous equa-
tion (25) has a solution if, and only if, and only if, the inhomogeneous parts
are orthogonal to every solution of the corresponding adjoint homogeneous

problem; that is,

-]

I

0 m

* = =
: Imn;mndy 0, n=1,2,3 (28)

I~

where ;; are solutions of the adjoint problems, they are,

6 -
* - * = = se e

DC* j§1 (bmj)n ;jn 0, Mm=1,...6 (29)

S5y = Oy = O3, =0 Aty =0 (30)

e Ghnr St > O as y + (31)

for n=t,2,3, and b ., = -b, .
mj jm

The solvability conditions (28) give the following differential equations

for the evolution of the amplitudes an in time and space,

1

da Ba1 da -T
=0 (32)

L + h +h —1 +eh a + ¢h

hy 3t 21 3x 31 3z 174124 2513233



da da da -T

2 2 2 - 2

M2 3t t P 3x tPap gzt Mgt ENg32 = 0 (33)
3a3 8a3 3a3 -F3

Bya 38 * Po3 3%t Pa3 3zt Eqlaa?s t 6P5333,6 T =0 (34)

h_. , and Fn are given in Appendix B, and ( )

h4n' Sn

where h1n' h2n' h3n'
indicates a complex conjugate of ( ).

Equations (32)-(34) account for the combined effect of the growth of the
boundary layer, and the nonlinear interactions. The parameters €; and €3
are shown here (€; = €; = € in the analysis) only to indicate terms due to
each effect. If ¢; << €;, the nonlinear interaction can be neglected. When
€) << €3, the nonparallel effect can be neglected. It is worth noting that
with this formulation both nonlinear and nonparallel effects are independent
of the particular disturbance quantity being considered.

Solution of equations (32)-(34) for a general initial condition is not a
simple task. However, by assuming the spatial modulation of a single
frequency disturbance on an infinite span wing, a situation closer to
17’18

experiments , we can allow for modulation only in the x-direction, and

equations (32)-(34) can be simplified by

3 9
T O (35)
Wy =W, = w,. = 0, g, = 0 (36)
By - By = By =0, 0 =0 (37)

It is convenient to introduce the transformation

A =ca_exp (- [ a dx - B_.z) (38)
n n ni ni

then equations (32)-(34) reduce to

aa, — i
= (G1 - a1i)A1 + HAAe (39)



- i
el (G2 - mzi)A2 + HAAe (40)
da .
3 -i¢
= (G3 - a3i)A3 + H3A1A2e (41)
where
h
G = -¢€ 4“, (42)
n h
2n
h
5n
Hn = - (43)
2n
¢ =/ eo_dx (44)
In equations (38), B_. 1is a parameter and is made equal to zero in equations

ni
(39)-(41). We note that for the case of an infinite span wing, if the initial
wave has Bi = 0, it will remain zero downstream.

In order that the interaction coefficients Hn and the wave amplitudes
An are uniquely defined, it is necessary to specify the normalization imposed
on the eigensolutions Cmn of the first-order problem. This is chosen such
that the maximum of thg r.m.s., of C1n(§1n = un) over y 1is equal to one.
Note that the nonparallel coefficients Gn do not depend on the normalization
of Cmn or C;n’

To derive real equations for the amplitudes and phases, we let,

i
*
A = lA e © (45)
n 2n
. X
G =G e n (46)
n
- irn
H =H e , n=1,2,3 (47)
n n
Substituting (45)-(47) into (39)-(41) and dropping the *, we obtain,
dA1 1
= = (G1 cos x, - a1i)A1 + 5H1A2A3 cos (Y + T, + $) (48)

10



2 1
= = (G2 cos X, - azi)A2 + 552A1A3 cos (Y + T, + $) (49)
dA3 1
Fai (G3 cos x3 - a3i)A3 + 3H3A1A2 cos (-y + r3 - ¢) (50)
dy A A
= - (G3 sin x; = G, sin X, = G, sin x1) + [H3 ™, sin (-y + T, - $)

A_A A2A3
-Hz—ﬁzsm (Y+1'2+¢)-H1 2A1 sin (Y+r1+¢)] (51)
where

Y = AB - Az - x1 (52)

III. Mean Flow

The mean flow used in these calculations is the boundary layer with
suction on a 23° swept infinite span wing. The airfoil section (designated
SCLFC(1)-0513F) is supercritical with normal chord c = 6.44 ft. This wing
was the subject of extensive experiments designed to examine supercritical

19,20

laminar flow control technology at the Langley Research Center + Linear

stability calculations for this wing have been given by El-Hadyerzz,

23, and Berry et al.24

Mack
Freestream conditions for the present calculations are Mach number = 0.82
and a chord Reynolds number of 20 x 106. The upper surface pressure coeffi-
cient distribution is shown in Fig. (1) together with the suction parameter
distribution, and the distribution of the boundary layer maximum crossflow
component 'VNI maximum along the chord.
The three-dimensional boundary-layer solution is calculated using a

25 for

boundary layer program that is adapted from the code of Kaups and Cebeci
laminar, compressible boundary layers with adiabatic and wall suction boundary

conditions. The code assumes zero pressure gradient along the wing generator.

11



IV. Numerical Procedures

For n =1, 2, and 3, the set of equations (21)-(23) and their adjoints
(29)-(31) can be solved analytically in the freestream at y = Yoo producing
three linearly independent, exponentially decaying solutions with the

characteristic values,

) 2,1/2
A1 = (an + Bn) (53)
A = -[a® + 82 +iR(a +WB -w)l'/? (54)
2 n n n en n
Ay = A, (55)

with the freestream solution as initial condition, equation (21) is integrated
from y = Yo to y = 0 at the wall, using a variable step-size algorithmzs,
based on the Runge-Kutta-Fehlburg fifth-order forumlas. The solution is
orthonormalized at a preselected set of points using a modified Gram-Schmidt
procedure. A Newton-Raphson technique is used to iterate on the eigenvalue to
satisfy the last wall boundary condition. The eigensolutions associated with
the adjoint problem can be determined by integrating equations (29)-(31) using
the same procedures and the same previously determined eigenvalues.

To evaluate the nonparallel terms acmn/ax1 and dan/dx1, for n=1, 2,

and 3, we differentiate the first-order problem (21) with respect to x; and

obtain,
acmn g acjn § a(bmj)n
D( ) - (b .) = ——— . , M= 1,...6 (56)
3x1 521 j'n 3x 521 ax1 jn
3T 3t 3L
in 3n 4n
ax_ x, T aty=0 (57)
AL L g -
1n 3n 4n 0 as y + = (58)

12



The homogeneous parts of equation (56) have a nontrivial solution. Their
eigenvalues and adjoint are the same as those for the first-order problem

(21). Then, by applying the solvability condition, we obtain,

dc‘n h6n
it n=1, 2, 3 (59)
1 2n
wh . . . x
ere h6n are given in quadratures in terms of Cmn' Cmn' an, and Bn (see

Bppendix C). Condition (59) permits the integration of equations (56)-(58) to
determine acmn/ax1 using the same procedures as those for the first-order
problem, but for nonhomogeneous sets of equations.

With all terms in h2n and h4n known, the nonparallel coefficients Gn
are calculated from equation (42), separately for each wave (n = 1, 2, and 3).
Whereas the interaction coefficients Hn are calculated from equation (43)
using the parallel results for the three waves altogether.

The calculations are repeated at different streamwise locations to
evaluate Gn and Hn for given waves of fixed physical frequency £ in Hz,
and fixed physical spanwise wavelength Az (nondimensionalized with respect to
the normal chord c) that satisfy the conditions (36) and (37). For different
initial amplitudes of the respective waves, the amplitude evolution equations
(48)-(51) are then integrated using a fourth-order variable interval Runge-

Kutta method by Fehlberg27.

V. Nonlinear Effects in Parallel Flows

when the amplitude of the disturbance, although small, is sufficiently
large, nonparallel effects are thought to have no substantial influence. 1In
this section, we assume that ¢, << g such that nonparallel effects are

neglected.

13



Sa. Interaction between traveling CF modes

First, we study a triad that is comprised of traveling CF waves near the

leading edge of the swept wing. The triad has the frequencies £, = 100 Hz,

£2 200 Hz, and f3 = 300 Hz. The corresponding spanwise wavelengths are

A
z

0.0006, 0.0006, and 0.0003, respectively. Calculations start at R = 260
(0.078% chord) where the three waves are unstable in the absence of the
interaction. The frequencies and spanwise wavelengths satisfy the resonant
conditions (36) and (37) at all streamwise locations.

When the initial amplitudes of the triad waves are comparable in
magnitude, the interaction between the waves is found to be very weak (not
shown). It is also found that the initial spectrums of the triad amplitudes
and phases play an important role in the interaction process. For example,
Fig. (2) shows the modulation with R of both A3 and the phase angle Y
defined by equation (52). The initial amplitude Aj35 = 0.0001, and the

initial phase angle 7Yy

0 (all calculations are for 7Yy = 0 unless other-

!}

wise stated). For (A;g = Agg) < 0.0001, the amplitude A3 1is hardly affected
by the interaction. With the increase of A|g and Ajp, a sharp increase in
A3 occurs starting at an earlier streamwise location. Fig. (3) shows the
modulation of A3z for the same conditions as in Fig. (2) but for yg = m. 1In
both cases the modulation of A; and A, 1is almost unaffected by the inter-
action. Fig. (4) shows that the modulation of A3 is affected by its initial
amplitude. If A3; is large, A3 is hardly affected by the interaction,
until later downstream after the amplitudes A; and A; become large enough.
while for small A3, the effect of the interaction shows up early upstream
with a very sharp increase.

A strong interaction may also occur and amplify A; or A, depending on

the appropriate initial amplitude and phase spectrum. Fig. (5) shows strong

14



modulation of A; when A 5 1is very small compared to Ay and Azg. The
same picture is almost true for the modulation of A, when BA,; is very
small compared to A;;5 and A3g. In both situations A3 undergoes weak
variations from its linear modulation (not shown). Fig. (6) gives the depend-
ence of A; on the initial amplitude A;; when A3y = 0.0005, and Aj3g =
0.002.

Fig. (7) shows the variation with R of the interaction coefficients
n

H,n=1, 2, and 3, given by equation (43). It shows that 'Hn" correspond-

ing to f3 = 300 Hz and Az = 0.0003, is much higher than those for f;, and £,.

Fig. (8) shows the variation of the detuning parameter €0, with R. It
indicates that perfect tuning occurs only at one location. In spite of that,
preceding results show that a strong interaction continues to exist even if
the resonant conditions are not tuned provided that the initial amplitudes
have the appropriate spectrum.

As we see from previous calculations, the triad used for this study
exhibits a strong resonance that may amplify a superharmonic (A3), or may
amplify a subharmonic (A; or Aj;). This is again illustrated in Fig. (9). At
a sufficient distance downstream, the domination of one or the other will
depend on the spectrum of the initial amplitudes of the interacting waves.
These results may explain the anomalies found in the crossflow observations of
Saric and Yeatesze. In spite of the 1-cm space streaks they visually
observed, their hot wire measurements in the boundary layer showed a super-
harmonic of 0.5-cm periodicity dominated disturbance growth. Reed29 explained
this anomalies using an approach that considered the growth of the super-

harmonic as a secondary instability in the presence of finite amplitude

unsteady crossflow disturbance., The triad resonance model presented here

15



predicts that a superharmonic (Az = 0.0003) will amplify and its amplitude
ratio will eventually reach three times or more the amplitude of other compo-
nents of the triad (kz = 0.0006, Az = 0.0006) when the initial amplitude of
the superharmonic is very small. The same model also predicts that a subhar-
monic (Az = 0.,0006) may dominate disturbance growth if its intial amplitude is

small compared to other components of the triad.

5b. Interaction between traveling CF and VV modes

In a three-dimensional boundary layer, the disturbance is necessarily
three dimensional. At the leading edge region of a swept wing and in the
direction of crossflow, there are really two spectra to be considered to the
solution of the leading-order equations (21). Crossflow modes (stationary or
traveling) are given by the eigensolution of equation (21). The same equa-
tions also admit eigensolutions with v = 0 and p = 0, correspond physically
to horizontal motions which are called vertical vorticity eigenmodes. These

3033

eigenmodes, as in the case of two-dimensional flows , are always damped

but the damping rate may be quite small so that the nonlinear effect could
trigger large instabilities32r33.

In our calculations, we were able to converge to a VV mode in the
crossflow direction, that is damped.

Here, we study the resonant interaction of a triad that is comprised of
two traveling CF modes (f, = 100 Hz, kz = 0.0006 and f, = 200 Hz, Az = 0.,0006)
and a VV mode (f3 = 300 Hz, Az = 0.0003). Calculations start at R = 779
(2.1% chord), where, in the absence of the interaction, the CF modes are
unstable while the VV mode is damped. Again, the frequencies and spanwise

wavelengths satisfy the resonant conditions (36) and (37) at all streamwise

locations.

16



Fig. (10) shows that a VV mode with A3( = 0.0001 resonate with two
traveling CF modes and becomes strongly unstable in a short distance
downstream. Fig. (11) shows the influence of A3y on this instability when
the CF mode initial amplitudes A;g = Azg = 0.002. This strong instability
may be due to a strong interaction coefficent |H3, (corresponding to the VvV
mode) compared to ,Hll and ,Hzl, see Fig. (12). This strong instability of
the VvV mode occurs in spite of the imperfect resonant conditions shown by the

distribution of the detuning parameter ecx in Fig. (13).

5c. 1Interaction between traveling CF and stationary CF modes

Here, we study the resonant interaction that is comprised of two travel-
ing CF modes (f; = 300 Hz, Az = 0.0006 and f3 = 300 Hz, Az = 0.0003) and a
stationary CF mode (f, = O, Az = 0.0006) near the leading edge of the swept
wing. Calculations start at R = 260 (0.078% chord) where the three waves are
unstable.in the absence of the interaction. The frequencies and spanwise
wavelengths satisfy the resonant conditions (36) and (37) at all streamwise
locations.

Fig. (14) shows the effect of the stationary CF vortex with initial
amplitude A;j = 0.005 on traveling CF modes A, and Aj3. Since all waves
are unstable in the range of Reynolds number considered, the interaction
process seems to accelerate the growth of A; and A3 compared to their
linear growth. The detuning parameter eox distribution is given in Fig.
(15). Fig. (16) gives the effect of the initial amplitude of the stationary

vortex on the modulation of A; and Ag.

5d. Interaction between TS and stationary CF modes

This type of interaction is a major unanswered question concerning

swept-wing flows. Some type of interaction between a crossflow vortex and

17



amplifying TS mode is thought to cause premature transition on a swept wing.
Saric and Reedal+ suggested that the anomaly behavior of transition in the
early LFC work of Bacon et al.35 when sound is introduced in the presence of
crossflow vortices can be due to this interaction phenomenon. Also, the

l36 on yawed cylinders and of Michel et al.37 on an

experimental work of Pol
infinite swept wing, observed unsteadiness at transition which might also be
due to this interaction phenomenon. Reedko, using a parametric resonance
model, showed that CF vortices could excite TS modes in the three-dimensional
boundary layer on the X-21 wing, producing a double exponential growth of the
TS mode.

Here, we study one of these possible interactions. In the absence of the
interaction, a crossflow vortex (f; = 0 and Az = 0.003) starts to amplify
nearly at R = 706 (1.6% chord), then experiences a very slow growth for a
long distance downstream, until it dies approximately at R = 1663 (13%
chord). Two TS modes having the same frequency (f, = 20 KHz, Az = 0.012 and
£3 = 20 KHz, Az = 0.0924) will amplify shortly after R = 706 and both decay
around R = 1150 (5.8% chord). The frequencies and spanwise wavelengths of
the triad satisfy the resonant conditions (36) and (37) at all streamwise
locations.

FPor different values of the initial amplitude of the crossflow vortex,
Fig. (17) shows large amplification of the TS modes A; and A3 due to the
interaction, when A,, and A3y are small (Aj; = Azg = 0.0001). The figure
also shows a reduction in the vortex amplitude due to the interaction. Higher

values of the initial TS amplitudes weaken the interaction as shown in Fig.

(18) for a CF vortex initial amplitude Ajg = 0.1.
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Fig. (19) shows the change in the interaction coefficients with R, where

|H3| and 'Hzl (corresponding to TS modes) are higher than IHl . Fig. (20)

shows the distribution of the detuning parameter €q, with R.

The effect of the initial value of the phase angle Yy is given in Fig.
(21) for A,;9 = 0.1, App = A3g = 0.0001. The anomaly behavior of A3 at the
beginning of the interaction is due to different values of 7Yg. Fig. (22)
shows how Y reaches the same value at some distance downstream in spite of

different initial values vg.

VI. Nonparallel Flow Effects

When €, = €;, nonparallelism of the mean flow comes into play signifi-
cantly in the nonlinear amplitude modulation. However, the nonparallel terms
in equations (48)-(51) turn out to be most important as the disturbance first
grows and this, in turn, controls what happens subsequently as the amplitude
of the disturbance increases. Only the interaction between TS and stationary
CF modes is investigated in this section.

Fig. (23) shows the linear parallel and nonparallel amplitude modulations
of the same instability modes given in section 5d4. Fig. (24) shows the
nonlinear modulation of the amplitudes with the nonparallelism of the mean
flow included for various initial amplitudes of the interacting modes. This
figure indicates that during the initial growth or decay of the amplitude, its
modulation follows exactly the nonparallel development until the amplitudes

are large enough to interact nonlinearly.

19



VII. Concluding Remarks

1. The preceding calculations show that the development of many triads,
whose components can, in principle, take part in several resonant interactions
at once, occurs in three-dimensional flows of boundary-layer type.

2. An important role in the nonlinear process is played by the initial
spectrum of amplitude and phases of the triad components.

3. Due to the interaction of different instability modes, even if they
are not strongly amplified, the classification concept suggested by

8 for the stability problem into independent modes is no longer

Pfenninger3
valid.

4. Nonparallel flow effects control the initial development of the
disturbance triad components while the disturbance amplitude is sufficiently
small. As the amplitudes increase, nonlinear effects control their subsequent
spatial development.

5. The above analysis becomes incorrect with the increase of the
amplitudes An’ but the nature of a set of phenomena in the 3D boundary

layers is connected to the resonant mechanism, and may be explained on the

basis of the results.,
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for n=1, 2, and 3
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Ty = [ (agy + oy = aggdax + [ (Byy + Byy = B3)dz = [ (wy; + wy; - wyy)dt
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